anticorps APG16L, anticorps ATG16A, anticorps ATG16L, anticorps IBD10, anticorps WDR30, anticorps 1500009K01Rik, anticorps Apg16l, anticorps Atg16l, anticorps Wdr30, anticorps atg16, anticorps atg16l, anticorps fb57e05, anticorps wu:fb57e05, anticorps zgc:110147, anticorps autophagy related 16 like 1, anticorps autophagy related 16-like 1 (S. cerevisiae), anticorps autophagy related 16-like 1, anticorps autophagy related 16 like 1 S homeolog, anticorps ATG16 autophagy related 16-like 1 (S. cerevisiae), anticorps ATG16L1, anticorps Atg16l1, anticorps atg16l1, anticorps atg16l1.S
Sujet
Macroautophagy is the major inducible pathway for the general turnover of cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic enzymes and organelles during nutrient starvation. Macroautophagy involves the formation of double-membrane bound autophagosomes which enclose the cytoplasmic constituent targeted for degradation in a membrane bound structure, which then fuse with the lysosome (or vacuole) releasing a single-membrane bound autophagic bodies which are then degraded within the lysosome (or vacuole). The APG12-APG5-APG16L complex is esential for the elongation of autophagic isolation membranes. This complex initially associates in uniform distribution with small vesicle membranes. During membrane elongation, the complex partitions, with a great concentration building on the outer side of the isolation membrane. Upon completion of the formation of the autophagosome, the APG12-APG5-APG16L dissociates from the membrane.Synonyms: APG16-like 1, Autophagy-related protein 16-1