Produced from sera of rabbits immunized with highly pure recombinant ov-VEGF-E produced in E. coli. A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 (Dehio et al., 1999, GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999, Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor -2/KDR.
PDGFC
Reactivité: Humain
WB
Hôte: Lapin
Polyclonal
unconjugated
Indications d'application
Western Blot: Use 1-5 μg/mL
Restrictions
For Research Use only
Format
Lyophilized
Reconstitution
Centrifuge vial prior to opening. Reconstitute in sterile water to a concentration of 0.1-1.0 mg/mL.
Buffer
PBS
Conseil sur la manipulation
Centrifuge vial prior to opening.
Stock
4 °C,-20 °C
Stockage commentaire
The lyophilized antibody is stable for at least 2 years at -20°C. After sterile reconstitution the antibody is stable at 2-8°C for up to 6 months. Frozen aliquots are stable for at least 6 months when stored at -20°C. Addition of a carrier protein or 50% glycerol is recommended for frozen aliquots.
VEGF-E,A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins. Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor -2/KDR.