FFAR3 anticorps (C-Term)
-
- Antigène Voir toutes FFAR3 Anticorps
- FFAR3 (Free Fatty Acid Receptor 3 (FFAR3))
-
Épitope
- C-Term
-
Reactivité
- Humain, Rat
-
Hôte
- Lapin
-
Clonalité
- Polyclonal
-
Conjugué
- Cet anticorp FFAR3 est non-conjugé
-
Application
- ELISA, Western Blotting (WB), Immunohistochemistry (IHC)
- Specificité
- GPR41 Antibody detects endogenous levels of total GPR41.
- Purification
- The antiserum was purified by peptide affinity chromatography using SulfoLinkTM Coupling Resin (Thermo Fisher Scientific).
- Immunogène
- A synthesized peptide derived from human GPR41, corresponding to a region within C-terminal amino acids.
- Isotype
- IgG
- Top Product
- Discover our top product FFAR3 Anticorps primaire
-
-
- Indications d'application
- WB 1:1000, IHC 1:200, ELISA(peptide) 1:20000-1:40000
- Restrictions
- For Research Use only
-
- Format
- Liquid
- Concentration
- 1 mg/mL
- Buffer
- Rabbit IgG in phosphate buffered saline , pH 7.4, 150 mM NaCl, 0.02 % sodium azide and 50 % glycerol.
- Agent conservateur
- Sodium azide
- Précaution d'utilisation
- This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
- Stock
- -20 °C
- Stockage commentaire
- Store at -20 °C. Stable for 12 months from date of receipt.
- Date de péremption
- 12 months
-
- Antigène
- FFAR3 (Free Fatty Acid Receptor 3 (FFAR3))
- Autre désignation
- FFAR3 (FFAR3 Produits)
- Synonymes
- anticorps GPR41, anticorps FFA3R, anticorps Gpr41, anticorps Gm478, anticorps free fatty acid receptor 3, anticorps LOC455946, anticorps FFAR3, anticorps LOC100600134, anticorps Ffar3
- Sujet
-
Description: G protein-coupled receptor that is activated by a major product of dietary fiber digestion, the short chain fatty acids (SCFAs), and that plays a role in the regulation of whole-body energy homeostasis and in intestinal immunity. In omnivorous mammals, the short chain fatty acids acetate, propionate and butyrate are produced primarily by the gut microbiome that metabolizes dietary fibers. SCFAs serve as a source of energy but also act as signaling molecules. That G protein-coupled receptor is probably coupled to the pertussis toxin-sensitive, G(i/o)-alpha family of G proteins. Its activation results in the formation of inositol 1,4,5-trisphosphate, the mobilization of intracellular calcium, the phosphorylation of the MAPK3/ERK1 and MAPK1/ERK2 kinases and the inhibition of intracellular cAMP accumulation (PubMed:12711604). Activated by SCFAs and by beta-hydroxybutyrate, a ketone body produced by the liver upon starvation, it inhibits N-type calcium channels and modulates the activity of sympathetic neurons through a signaling cascade involving the beta and gamma subunits of its coupled G protein, phospholipase C and MAP kinases. Thereby, it may regulate energy expenditure through the control of the sympathetic nervous system that controls for instance heart rate. Upon activation by SCFAs accumulating in the intestine, it may also signal to the brain via neural circuits which in turn would regulate intestinal gluconeogenesis. May also control the production of hormones involved in whole-body energy homeostasis. May for instance, regulate blood pressure through renin secretion. May also regulate secretion of the PYY peptide by enteroendocrine cells and control gut motility, intestinal transit rate, and the harvesting of energy from SCFAs produced by gut microbiota. May also indirectly regulate the production of LEP/Leptin, a hormone acting on the CNS to inhibit food intake, in response to the presence of short-chain fatty acids in the intestine. Finally, may also play a role in glucose homeostasis. Besides its role in energy homeostasis, may play a role in intestinal immunity. May mediate the activation of the inflammatory and immune response by SCFAs in the gut, regulating the rapid production of chemokines and cytokines by intestinal epithelial cells. Among SCFAs, the fatty acids containing less than 6 carbons, the most potent activators are probably propionate, butyrate and pentanoate while acetate is a poor activator (PubMed:12496283, PubMed:12711604).
Gene: FFAR3
- Poids moléculaire
- 38kDa
- ID gène
- 2865
- UniProt
- O14843
-